{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# option - 个性化显示设置\n", "\n", "\n", "```{admonition} 在线刷题\n", ":class: seealso\n", "\n", "检查 or 强化 `Pandas` 数据分析操作?👉在线体验「Pandas进阶修炼300题」\n", "```\n", "\n", "```{note} \n", "本页面代码可以[在线编辑、执行](../指引/在线执行.md)!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 本页面数据说明\n", "\n", "为了更好的介绍相关操作,本页面使用 **某招聘数据** 数据进行展开,你应该对数据字段、数值、类型等相关信息做一个大致了解!" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "tags": [ "hide-input", "thebe-init" ] }, "outputs": [ { "data": { "text/html": [ "
positionId | positionName | companyId | companySize | industryField | financeStage | companyLabelList | firstType | secondType | thirdType | skillLables | positionLables | industryLables | createTime | formatCreateTime | district | businessZones | salary | workYear | jobNature | education | positionAdvantage | imState | lastLogin | publisherId | approve | subwayline | stationname | linestaion | latitude | longitude | hitags | resumeProcessRate | resumeProcessDay | score | newScore | matchScore | matchScoreExplain | query | explain | isSchoolJob | adWord | plus | pcShow | appShow | deliver | gradeDescription | promotionScoreExplain | isHotHire | count | aggregatePositionIds | famousCompany | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "6802721 | \n", "数据分析 | \n", "475770 | \n", "50-150人 | \n", "移动互联网,电商 | \n", "A轮 | \n", "['绩效奖金', '带薪年假', '定期体检', '弹性工作'] | \n", "产品|需求|项目类 | \n", "数据分析 | \n", "数据分析 | \n", "['SQL', '数据库', '数据运营', 'BI'] | \n", "['电商', '社交', 'SQL', '数据库', '数据运营', 'BI'] | \n", "['电商', '社交', 'SQL', '数据库', '数据运营', 'BI'] | \n", "2020/3/16 11:00 | \n", "11:00发布 | \n", "余杭区 | \n", "['仓前'] | \n", "37500 | \n", "1-3年 | \n", "全职 | \n", "本科 | \n", "五险一金、弹性工作、带薪年假、年度体检 | \n", "today | \n", "2020/3/16 11:00 | \n", "12022406 | \n", "1 | \n", "nan | \n", "nan | \n", "nan | \n", "30.27842 | \n", "120.00592 | \n", "nan | \n", "50 | \n", "1 | \n", "233 | \n", "0 | \n", "15.10187 | \n", "nan | \n", "nan | \n", "nan | \n", "0 | \n", "0 | \n", "nan | \n", "0 | \n", "0 | \n", "0 | \n", "nan | \n", "nan | \n", "0 | \n", "0 | \n", "[] | \n", "False | \n", "
1 | \n", "5204912 | \n", "数据建模 | \n", "50735 | \n", "150-500人 | \n", "电商 | \n", "B轮 | \n", "['年终奖金', '做五休二', '六险一金', '子女福利'] | \n", "开发|测试|运维类 | \n", "数据开发 | \n", "建模 | \n", "['算法', '数据架构'] | \n", "['算法', '数据架构'] | \n", "[] | \n", "2020/3/16 11:08 | \n", "11:08发布 | \n", "滨江区 | \n", "['西兴', '长河'] | \n", "15000 | \n", "3-5年 | \n", "全职 | \n", "本科 | \n", "六险一金,定期体检,丰厚年终 | \n", "disabled | \n", "2020/3/16 11:08 | \n", "5491688 | \n", "1 | \n", "nan | \n", "nan | \n", "nan | \n", "30.18804 | \n", "120.20118 | \n", "nan | \n", "23 | \n", "1 | \n", "176 | \n", "0 | \n", "32.55941 | \n", "nan | \n", "nan | \n", "nan | \n", "0 | \n", "0 | \n", "nan | \n", "0 | \n", "0 | \n", "0 | \n", "nan | \n", "nan | \n", "0 | \n", "0 | \n", "[] | \n", "False | \n", "
2 | \n", "6877668 | \n", "数据分析 | \n", "100125 | \n", "2000人以上 | \n", "移动互联网,企业服务 | \n", "上市公司 | \n", "['节日礼物', '年底双薪', '股票期权', '带薪年假'] | \n", "产品|需求|项目类 | \n", "数据分析 | \n", "数据分析 | \n", "['数据库', '数据分析', 'SQL'] | \n", "['数据库', 'SQL'] | \n", "[] | \n", "2020/3/16 10:33 | \n", "10:33发布 | \n", "江干区 | \n", "['四季青', '钱江新城'] | \n", "3500 | \n", "1-3年 | \n", "全职 | \n", "本科 | \n", "五险一金 周末双休 不加班 节日福利 | \n", "today | \n", "2020/3/16 10:33 | \n", "5322583 | \n", "1 | \n", "4号线 | \n", "江锦路 | \n", "4号线_城星路;4号线_市民中心;4号线_江锦路 | \n", "30.24152 | \n", "120.21254 | \n", "nan | \n", "11 | \n", "4 | \n", "80 | \n", "0 | \n", "14.97236 | \n", "nan | \n", "nan | \n", "nan | \n", "0 | \n", "0 | \n", "nan | \n", "0 | \n", "0 | \n", "0 | \n", "nan | \n", "nan | \n", "0 | \n", "0 | \n", "[] | \n", "False | \n", "
3 | \n", "6496141 | \n", "数据分析 | \n", "26564 | \n", "500-2000人 | \n", "电商 | \n", "D轮及以上 | \n", "['生日趴', '每月腐败基金', '每月补贴', '年度旅游'] | \n", "开发|测试|运维类 | \n", "数据开发 | \n", "数据分析 | \n", "[] | \n", "['电商'] | \n", "['电商'] | \n", "2020/3/16 10:10 | \n", "10:10发布 | \n", "江干区 | \n", "nan | \n", "45000 | \n", "3-5年 | \n", "全职 | \n", "本科 | \n", "年终奖等 | \n", "threeDays | \n", "2020/3/16 10:10 | \n", "9814560 | \n", "1 | \n", "1号线 | \n", "文泽路 | \n", "1号线_文泽路 | \n", "30.29940 | \n", "120.35030 | \n", "nan | \n", "100 | \n", "1 | \n", "68 | \n", "0 | \n", "12.87415 | \n", "nan | \n", "nan | \n", "nan | \n", "0 | \n", "0 | \n", "nan | \n", "0 | \n", "0 | \n", "0 | \n", "nan | \n", "nan | \n", "0 | \n", "0 | \n", "[] | \n", "True | \n", "
4 | \n", "6467417 | \n", "数据分析 | \n", "29211 | \n", "2000人以上 | \n", "物流丨运输 | \n", "上市公司 | \n", "['技能培训', '免费班车', '专项奖金', '岗位晋升'] | \n", "产品|需求|项目类 | \n", "数据分析 | \n", "数据分析 | \n", "['BI', '数据分析', '数据运营'] | \n", "['BI', '数据运营'] | \n", "[] | \n", "2020/3/16 9:56 | \n", "09:56发布 | \n", "余杭区 | \n", "['仓前'] | \n", "30000 | \n", "3-5年 | \n", "全职 | \n", "大专 | \n", "五险一金 | \n", "disabled | \n", "2020/3/16 9:56 | \n", "6392394 | \n", "1 | \n", "nan | \n", "nan | \n", "nan | \n", "30.28295 | \n", "120.00976 | \n", "nan | \n", "20 | \n", "1 | \n", "66 | \n", "0 | \n", "12.75538 | \n", "nan | \n", "nan | \n", "nan | \n", "0 | \n", "0 | \n", "nan | \n", "0 | \n", "0 | \n", "0 | \n", "nan | \n", "nan | \n", "0 | \n", "0 | \n", "[] | \n", "True | \n", "
\n", " | positionId | \n", "positionName | \n", "companyId | \n", "companySize | \n", "industryField | \n", "... | \n", "promotionScoreExplain | \n", "isHotHire | \n", "count | \n", "aggregatePositionIds | \n", "famousCompany | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "6802721 | \n", "数据分析 | \n", "475770 | \n", "50-150人 | \n", "移动互联网,电商 | \n", "... | \n", "NaN | \n", "0 | \n", "0 | \n", "[] | \n", "False | \n", "
1 | \n", "5204912 | \n", "数据建模 | \n", "50735 | \n", "150-500人 | \n", "电商 | \n", "... | \n", "NaN | \n", "0 | \n", "0 | \n", "[] | \n", "False | \n", "
2 | \n", "6877668 | \n", "数据分析 | \n", "100125 | \n", "2000人以上 | \n", "移动互联网,企业服务 | \n", "... | \n", "NaN | \n", "0 | \n", "0 | \n", "[] | \n", "False | \n", "
3 | \n", "6496141 | \n", "数据分析 | \n", "26564 | \n", "500-2000人 | \n", "电商 | \n", "... | \n", "NaN | \n", "0 | \n", "0 | \n", "[] | \n", "True | \n", "
4 | \n", "6467417 | \n", "数据分析 | \n", "29211 | \n", "2000人以上 | \n", "物流丨运输 | \n", "... | \n", "NaN | \n", "0 | \n", "0 | \n", "[] | \n", "True | \n", "
5 rows × 52 columns
\n", "\n", " | positionId | \n", "positionName | \n", "companyId | \n", "companySize | \n", "industryField | \n", "... | \n", "promotionScoreExplain | \n", "isHotHire | \n", "count | \n", "aggregatePositionIds | \n", "famousCompany | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "6802721 | \n", "数据分析 | \n", "475770 | \n", "50-150人 | \n", "移动互联网,电商 | \n", "... | \n", "NaN | \n", "0 | \n", "0 | \n", "[] | \n", "False | \n", "
1 | \n", "5204912 | \n", "数据建模 | \n", "50735 | \n", "150-500人 | \n", "电商 | \n", "... | \n", "NaN | \n", "0 | \n", "0 | \n", "[] | \n", "False | \n", "
2 | \n", "6877668 | \n", "数据分析 | \n", "100125 | \n", "2000人以上 | \n", "移动互联网,... | \n", "... | \n", "NaN | \n", "0 | \n", "0 | \n", "[] | \n", "False | \n", "
3 | \n", "6496141 | \n", "数据分析 | \n", "26564 | \n", "500-2000人 | \n", "电商 | \n", "... | \n", "NaN | \n", "0 | \n", "0 | \n", "[] | \n", "True | \n", "
4 | \n", "6467417 | \n", "数据分析 | \n", "29211 | \n", "2000人以上 | \n", "物流丨运输 | \n", "... | \n", "NaN | \n", "0 | \n", "0 | \n", "[] | \n", "True | \n", "
5 rows × 52 columns
\n", "